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Abstract

From the theoretical point of view, the states of manufacturing resources can be monitored and assessed through the amount of infor-
mation needed to describe their technological structure and operational state. The amount of information needed to describe cellular
manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Based on the Shannon
entropy, the models of the structural entropy and the operational entropy of cellular manufacturing systems are developed, and the cog-
nizance of the states of manufacturing resources is also illustrated. Scheduling is introduced to measure the entropy models of cellular
manufacturing systems, and the feasible concepts of maximum schedule horizon and schedule adherence are advanced to quantitatively
evaluate the effectiveness of schedules. Finally, an example is used to demonstrate the validity of the proposed methodology.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China press. All rights reserved.

Keywords: Cellular manufacturing systems; Structural entropy; Operational entropy; Scheduling

1. Introduction

Manufacturing systems operate a complex system within
a challenging and ever-changing environment. They can be
used to deal with many products that are made on many
different machines, with several possible routes in the fac-
tory. However, how to cope with the increasing structural
and operational complexity in manufacturing systems
and respond to customer demands quickly is still a tough
question for modern manufacturing organizations. Hence,
executing effective measurement and assessment to the
running of manufacturing systems has become one of the
focuses in the manufacturing field, through describing
and analyzing the information of the states of manufactur-
ing resources [1,2].

Shannon [3] first proposed that the amount of informa-
tion could be measured by entropy function in 1948. For a

given manufacturing system (suppose that the nature and
the meaning of the information of its states are under a
known or a certain condition), the states of each resource
are determined by their technological structure and opera-
tional status. Therefore, we are able to carry out the mea-
surement and assessment to the states of manufacturing
resources, if the amount of information needed to describe
their technological structure and operational status is cal-
culated [4]. As a result, the expected amount of information
needed to describe the scheduled states of a manufacturing
system can be defined as structural entropy, denoted by Hs,
whereas the amount of information needed to describe the
scheduled states of manufacturing systems that actually
occur over time in operation can be defined as operational
entropy, denoted by Hd. According to the Shannon
entropy, the higher the uncertainty in the system is, the
higher the entropy is, and the more information is required
to understand what is happening in it. But for a manufac-
turing system itself, the values of its structural entropy and
operational entropy are not absolute. On one hand, manu-
facturing systems with a smaller entropic value may lack
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enough flexibility; on the other hand, manufacturing sys-
tems with a larger entropic value are hard to control.
Therefore, the states of manufacturing systems can be
quantitatively analyzed through their entropy, and the
complex traits of the structure and operation of manufac-
turing systems can also be understood and grasped exactly
[5–7]. We can evaluate and compare the design and struc-
ture in different systems and deeply analyze the reasons
that result in the uncontrolled state in the operation of
these systems, and then optimize the design and improve
the operational performance by using the data and results
obtained.

As an advanced mode of production, cellular manufac-
turing has been widely used in many manufacturing organi-
zations, and it can be introduced into the traditional
manufacturing firms by means of executing technical refor-
mations. Focusing on cellular manufacturing systems, in this
study, we will describe the information of states of manufac-
turing resources by constructing the structural and opera-
tional entropy models, and introduce schedule adherence
as a measurement for the models constructed in cellular man-
ufacturing systems. Finally, the validity of the proposed
methodology is demonstrated by an empirical study.

2. Entropy model of cellular manufacturing systems

It has been 60 years since information entropy was pro-
posed, and recently, theoretical research on the application
of information entropy of manufacturing systems has made
great progress. For example, Karp and Ronen [8,9] stated
that as long as different probabilities of products on the
assembly line were known, the amount of information
needed for that batch of products could be calculated,
and entropy in systems was considered to be the function
of the production scale; Frizelle [10] proposed DEM
(dynamic entropy model) and divided it into structural
complexity and operational complexity; Checkland [11]
concluded that the meaning of information entropy calcu-
lated in manufacturing systems was different from its com-
mon one; Dretske [12] used entropy to describe the
complexity of manufacturing systems, and found that the
greater the amount of states in facilities was, the larger
the entropic value was; Efstathiou et al. [13] proved that
systematic entropy equaled the complexity and it could
be used to describe and control the total amount of infor-
mation of manufacturing systems.

Based on the studies mentioned above, the concrete
meaning of information entropy is defined, and the entropy
models are also developed by analyzing the relationships of
facilities, parts, and tasks in systems so that the manufac-
turing systems can be described through using qualitative
and quantitative ways. However, these theoretical analyses
do not consider the application of information entropy in
manufacturing systems. Furthermore, the models are usu-
ally developed under some ideal conditions. In this study,
we will develop an entropy model that can be used in actual

cellular manufacturing systems and verify it by scheduling
in an empirical study.

2.1. Characteristic of cellular manufacturing systems

Cellular manufacturing, based on the theory of group
technology, is the mode of production used in manufactur-
ing single or variable products through arranging the man-
ufacturing equipment in the shape of the letter ‘‘U” within
a work cell. It is an efficient way to cut down the costs,
improve the quality of the products and strengthen the
manufacturing flexibility. Cellular manufacturing has been
widely used in many leading countries in manufacturing.
For example, 40% of manufacturing enterprises in Ger-
many have successfully introduced cellular manufacturing
into production [14].

The work cell is the basic unit of cellular manufacturing
[15]. It is composed of the manufacturing equipment, oper-
ators and equipment for transfer. Usually, the manufactur-
ing equipment in the work cell is arranged in the shape of
the letter ‘‘U”. The operators can operate flexibly and effi-
ciently in this U-workshop. Cellular manufacturing sys-
tems are different from the traditional manufacturing
systems which are progressive in their management struc-
ture, and are fixed and meticulous in their production
structure. Every relatively independent work cell can be a
unit of the relatively independent manufacturing systems,
and several units are managed and coordinated together
via the network.

2.2. Structural entropy model

In order to deduce the structural entropic model of cel-
lular manufacturing systems, we firstly introduce the defini-
tion of information entropy.

Suppose that there is a discrete stochastic variable X,
whose n possible outcomes are x1,x2, . . . ,xn, each with a
probability of occurrence of pi. Let p (p = p1,p2 ,. . . ,pn)
be the probability distribution. The measure of entropy
for this distribution is given by

EðX Þ ¼ �
Xn

i¼1

pilog2pi ð1Þ

where pi P 0,
Pn

i¼1pi ¼ 1. If X denotes a system, xi and pi

(i = 1,2 , . . . ,n) are its n possible states and their probabili-
ties in the system, then E(X) is the information entropy of
X, i.e. the amount of information needed to describe X.
E(X) also shows the uncertainty of X. The larger E(X) is,
the more uncertain X is. The information entropy de-
scribed in Eq. (1) has the following characteristics:

(i) When the value of the only one pi equals 1, the others
equal 0, the information entropy is the smallest, i.e.
E(X) = 0. And so X is under the state of full certainty.

(ii) The maximum value of E(X) occurs when all the out-
comes have an equal probability of occurring. This
maximum value can be shown to be equal to lnn.

390 Z. Zhang, R. Xiao / Progress in Natural Science 19 (2009) 389–395



(iii) Any change that leads to the equalization of pi will
increase the uncertainty of the system, so will the
information entropy.

According to the definition above, suppose that a cellu-
lar manufacturing system has n manufacturing units, the
Kth unit has m (m P 1) resources, the ith resource has Si

expected states, and the different states of every resource
are independent of each other. When one part is manufac-
tured solely by one machine, the states of the machine can
be defined by the products being processed or its idle time.
From Eq. (1), the structural entropy of resource i can be
deduced by

H s ¼ �
XSi

j¼1

pijlog2pij ð2Þ

where pij represents the probability of state j of resource i,
with 1 6 j 6 Si, and

PSi
j¼1pij ¼ 1.

According to the information entropy, the structural
entropic model that consists of m resources in a manufac-
turing unit is

H s ¼ �
Xm

i¼1

XSi

j¼1

pijlog2pij ð3Þ

From the above model, we are able to measure the states of
resources in the whole system by measuring the amount of
information of the states of every manufacturing cell in-
stead, and so the difficulty of measuring the states of the
whole system is reduced. If a manufacturing cell is treated
as a whole, we can define its states as follows: the whole
manufacturing cell will be in an operational state provided
that one machine in this cell is working continually; the
manufacturing cell will be in an idle state provided that
one machine in this cell is in malfunction.

The key point to calculate the structural entropy is to
confirm the states of resources in the system. Taking a dis-
crete manufacturing system as an example, if we only pay
attention to the facilities’ load, then the facilities’ states
can be defined as ‘‘producing,” ‘‘technological equipment
adjustment,” ‘‘machine maintenances,” and ‘‘idle.” But if
we care more about the specific production, we can further
define each facility’s states as ‘‘Process product A,” ‘‘Pro-
cess product B,” ‘‘Technological equipment adjustment
for product A,” ‘‘Technological equipment adjustment
for product B,” etc. Because the technological structure
of cellular manufacturing systems essentially determines
possible states of the resources in manufacturing systems,
it also determines the structural entropy of the systems.

2.3. Operational entropy model

The structural entropy only emphasizes the expected
states of manufacturing systems, but the operational
entropy describes the actual states of the systems in pro-
cessing. The actual states of cellular manufacturing systems

can be divided into two parts: one is the normal expected
states (in-control) according to the predetermined schedul-
ing; the other is the abnormal states deviating from sched-
uling (out-of-control), such as equipment breakdown and
operation delay. The actual states can be monitored
directly from cellular manufacturing systems in processing.

Based on Eqs. (1) and (3), the operational entropy of
cellular manufacturing systems can be expressed as

H 0d ¼ �
XS0i

j¼1

p0ijlog2p0ij ð4Þ

where S0i denotes the actual number of states of resource i

in the processing, and pij denotes the probability of state
j of resource i in the operational, with 1 6 j 6 S0i, andPS0i

j¼1p0ij ¼ 1.
If we suppose the in-control state of resource i in pro-

cessing is the first state of S0i (its probability is Pi), and
the other states of S0i are treated as the out-of-control
states, from the characteristics of information entropy,
and from Eq. (4), we can obtain

H 0d ¼ �pilog2pi �
XS0i

j¼2

p0ijlog2p0ij ð5Þ

where p0ij refers to the probability of state j of resource i in
the out-of-control states, with

PS0i
j¼2p0ij ¼ 1� pi.

Suppose the probability of all the in-control states is P,
the amount of out-of-control states of resource i is ni, so the
operational entropy model of cell manufacturing systems is

Hd ¼ �plog2p �
Xm

i¼1

Xni

j¼1

p0ijlog2p0ij ð6Þ

The second part of Eq. (6) is the occurring operational
entropy because manufacturing systems deviate from the
expected scheduling in processing, and it denotes the uncer-
tainty of manufacturing systems in processing.

3. Entropic measures to cellular manufacturing systems

In Section 2, according to the information entropy, we
have developed the structural entropy and the operational
entropy models to describe cellular manufacturing systems,
but the models are only used to describe the maximum
value of the amount of information of the states of manu-
facturing resources. (However, as the probability in the
operating process is not totally stochastic, the actual value
of entropy is smaller than this maximum value.) How to
use the entropy models to measure information of the
resources during the actual operating process, and then
to assess the systems states? This is a problem on which
we should do further research. In this section, the method
of scheduling will be used to measure entropy models in the
actual manufacturing systems.

3.1. Feasibility of measure in scheduling

In a cellular manufacturing system, the actual produc-
tions sometimes more or less deviates from the original
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plan of production due to the outer or inner interruptions.
If the artificial interference is not conducted in time, this
deviation will become more and more serious [16]. The nat-
ure of this deviation is that a part of the static amount of
information is transformed into the dynamic one in the
process of operating. Then, scheduling is used to adjust
the original plan and makes the production as smooth as
possible. According to Eq. (6) in Section 2.3, the second
item is the entropic increase because of the deviation from
the expected state in the process of operating, which indi-
cates the degree of the uncertainty. Therefore, if we can
measure the structural entropy in the scheduling and the
transferring rate from the structural entropy to the opera-
tional entropy, the entropy models will be measured in the
actual manufacturing systems.

During the process of scheduling, it is necessary to set a
time limit for the scheduling, such as schedule horizon [17],
only in this way can the scheduling be executed effectively.
If this time horizon is overmuch and exceeds a certain
amount of time, the actual production situation will be
totally different from the original scheduling plan, and
there will be no significance for scheduling. But if this time
horizon is not enough, the execution of the original plan
will be interrupted, and the costs of management will be
increased. To measure the structural entropy, Eq. (3) can
be used, but the value obtained is the structural entropy
at any time in the system. Because the data monitored in
scheduling are obtained within every time interval Dt (the
time interval for monitoring the states of scheduling), for
the scheduling plan with the schedule horizon T, we can
calculate its structural entropy by

H ss ¼ �
T
Dt

Xm

i¼1

XSi

j¼1

pijlog2pij ð7Þ

where pij represents the probability of resource i being in
the expected state j, Si represents the expected number of
the states of resource i. Eq. (7) denotes that the structural
entropy of the amount of T/t time interval in a schedule
horizon T is added up.

According to Eq. (6), the operational entropy produced
because of the deviation from the expected state at any
time in the actual operation is

Hdd ¼ �
Xm

i¼1

Xni

j¼1

p0ijlog2p0ij ð8Þ

where p0ij represents the probability of resource i being in
the deviating state j and ni represents the number of devia-
tion states of resource i.

Therefore, the average operational entropy (the speed of
the structural entropy transformed into the operational
entropy) produced for deviation from scheduling in the sys-
tem is

Hda ¼ �
1

Dt

Xm

i¼1

Xni

j¼1

p0ijlog2p0ij ð9Þ

That is to say, in schedule horizon T, for the interruptions
of environment, Hss, the structural entropy contained in
scheduling, is transforming into the operational entropy
at the average speed of Hda. The maximum feasible sche-
dule horizon can be calculated by

T max ¼
H ss

Hda

¼ T

Pm
i¼1

PSi
j¼1pijlog2pijPm

i¼1

Pni
j¼1p0ijlog2p0ij

ð10Þ

The numerator in Eq. (10) expresses the structural entropy
in the whole schedule horizon T with t as the time interval
for monitoring of the state, and the denominator of the
equation expresses the average speed of the structural en-
tropy transformed into the operational entropy. So Tmax

denotes the time needed to totally transform the structural
entropy contained in scheduling into the operational entro-
py. The scheduling plan will never be coincident with the
actual situation after Tmax. Thus, the re-scheduling must
be conducted.

3.2. Schedule adherence

In order to denote the degree of the accordance between
the actual execution and the original scheduling plan, we
first introduce the concept of scheduling adherence. As
mentioned above, the nature of the deviation in the operat-
ing systems is that part of the structural entropy contained
in scheduling is transformed into the operational entropy.
The degree of deviation can be described by Eq. (8). Simi-
larly, the degree of accordance in the scheduling can be
described by the structural entropy left in scheduling. We
may use the relative value to indicate

C ¼ H ss � HdaT
H ss

� 100% ð11Þ

i.e.

C ¼
Pm

i¼1

PSi
j¼1pijlog2pij �

Pm
i¼1

Pni
j¼1p0ijlog2p0ijPm

i¼1

PSi
j¼1pijlog2pij

� 100%

ð12Þ
Therefore, by adopting schedule horizon and schedule
adherence, we can measure the entropy models developed
and make a corresponding improvement plan to increase
the efficiency in scheduling according to the result of
measure.

4. An empirical study

Cellular manufacturing was implemented in a mechani-
cal job shop. The unit of cellular manufacturing included
the equipment of generating milling machine, spline milling
machine, keyway milling machine and internal grinder.
Five kinds of products in the unit of cellular manufacturing
were selected, and they were annular gear A1, angle gear
A2, conical gear A3, brake spindle A4, and milled spindle
A5. According to the weekly processing plan, the daily
(12 h) scheduling program was arranged, and the precision
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of scheduling was 0.5 h. The daily scheduling program is
expressed by Fig. 1(a). Scheduling often deviated from
the original scheme in the actual implementation process
owing to the change of manufacturing environments. The
actual implementation of the corresponding scheduling is
expressed by Fig. 1(b).

4.1. Calculation of the structural entropy in scheduling

To calculate the value of the structural entropy in sched-
uling, all of the expected discrete events were taken as the
states of manufacturing systems in this example. The
description of these states is denoted in Table 1. (We only
choose one adjustment state of technologic equipment
because the adjustment of technologic equipment is similar
in all products.) To obtain the statistical probability of
these states, a weekly (5 days) scheduling data are used
as the statistical data. According to the expected average
duration of each state, the probability of each state can
be obtained (pi = ti/5/12). Because T = 12 h, Dt = 0.5 h,
according to Eq. (7), the average structural entropy in
the Scheduling is 68.118168 bits.

4.2. Calculation of the operational entropy in scheduling

For the contrastive analysis with the structural entropy,
all the deviation states corresponding with the calculation
of the structural entropy in scheduling were taken as the
abnormal states of the operational entropy in cell manufac-
turing systems. The description of the states is given in
Table 2. In contrast to the structural entropic calculation,
the appearance probability of each abnormal state can be
obtained (pi = ti/5/12) through the state statistics in the
same monitoring period. According to Eq. (8), the value
of the operational entropy for deviating the expected
scheduling in any movement time (time-gap Dt = 0.5 h) is
0.992802 bits, and the average operational entropy is
1.985604 bits/h in a schedule period.

4.3. Validity of scheduling

According to Eq. (10), the maximum feasible schedule
horizon can be calculated as follows:

T max ¼
H ss

Hda

¼ 68:118168

1:985604
¼ 34:3 h

That is to say, the maximum time of scheduling is 34.4 h
(about 3 days) every time. Therefore, based on Eq. (11),
schedule adherence can be calculated as follows:

C ¼ H ss � HdaT
H ss

� 100% ¼ ð68:118168� 1:985604� 12Þ
68:118168

¼ 65:02%

As shown above, only 65.02% scheduling information (the
structural entropy) is implemented in the course of actual
operation and 34.98% scheduling information is trans-
formed into the operational entropy as a result of the dis-
ordering condition. From Table 2, we can further analyze
that the dominant causes that lead to the decline of sche-
dule adherence are the 6th abnormal state, the 7th abnor-
mal state and the 9th abnormal state, and their
proportions are 19.24%, 21.77% and 21.77% in the opera-
tional entropy, respectively.

Fig. 1. Daily scheduling and actual operational status. (a) Daily scheduling program; where M denotes the amount of time in equipment maintenance, J1–
J5, respectively, denote the amount of time in job of parts A1–A5, S1–S5, respectively, denote the amount of time in clamping and technologic equipment
adjustment and idle denotes the amount of time in idling equipment; (b) actual implementation of the corresponding scheduling; where J01–J05,
respectively, denote actual amount of time of the job of parts A1–A5. S01–S5, respectively, denote actual amount of time of clamp and technologic
equipment adjustment of the parts.

Table 1
Calculation of the structural entropy in scheduling.a

No. States The amount
of time

Probabilities pilog2pi

1 The processing of A1 6.0 0.100000 �0.332193
2 The processing of A2 12.5 0.208333 �0.471466
3 The processing of A3 9.0 0.150000 �0.410545
4 The processing of A4 8.0 0.133333 �0.387585
5 The processing of A5 7.5 0.125000 �0.375000
6 Technologic equipment

adjustment
10.0 0.166666 �0.430827

7 Idle 6.0 0.100000 �0.332192
8 Equipment

maintenances
1.0 0.016666 �0.098448

Total 60.0 1.000000 �2.838257

a The average structural entropy Hss = (12/0.5) � 2.838257 =
68.118168 bits.
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According to the above calculation and analysis, the
managers in job shop have adjusted the amount of time
of the three dominant abnormal states that result in the
decline of schedule adherence. These measures include
strategies such as quickening the adjustment of technologic
equipment of conical gear A3 and angle gear A2, decreasing
the non-planning processing and examining and repairing
equipment. The amount of time of the three abnormal
states is, respectively, cut down to 2 h, 2.5 h, and 1 h at last.
The calculation of the operational entropy after adjusting
the abnormal states is given in Table 3.

From Eq. (11), schedule adherence can be calculated
after adjusting the major abnormal states as follows:

C ¼ H ss � H daT
H ss

� 100% ¼ ð68:118168� 1:645604� 12Þ
68:118168

¼ 71:01%

Based on the above result, we can conclude that the
amount of scheduling information (the structural entropy)
implemented in the course of actual operation increases to
71.01%. That means the amount of scheduling information
transformed into the operational entropy as a result of dis-
ordering condition decreases to 28.99%. Therefore, the de-
gree of deviation in scheduling is availably controlled via
adjusting those major abnormal states. Thus, the validity
of the proposed methodology is demonstrated by an empir-
ical study.

5. Analysis and discussion

From the empirical study in Section 4, we can see that
the structural entropy model and the operational entropy
model have been applied in the measurement of the infor-
mation of the states of the manufacturing resources, which
combine theory with the actual product. Furthermore, the
result of measurement can be analyzed and then a more
pertinent suggestion can be given to the manufacturing
systems.

From Eq. (11), we can conclude that the operational
entropy transformed from the structural entropy, i.e. the
second part of the numerator in the equation should be
decreased in order to improve the schedule adherence in
the condition of a certain value of the structure entropy
in manufacturing systems. On one hand, the degree of devi-
ation in scheduling may be controlled through setting up a
reasonable schedule horizon; on the other hand, the causes
of the decline of scheduling adherence can be further ana-
lyzed, and finally the operating states of the manufacturing
systems are improved.

According to the results of the example in Section 4,
some measures should be taken as follows in order to
enhance the validity of scheduling. Firstly, the reasonable
schedule horizon can be reset. For example, in an empirical
study, the 12 h schedule horizon should be divided into two
parts: the former part is supposed to be the precise schedule
horizon and the latter one is arranged for duty tabulation

Table 3
Calculation of the operational entropy after adjusting the major abnormal states.

No. States The amount of time Probabilities pi
0log2pi‘

1 The processing of A1 overtime 0.5 0.008333 �0.057557
2 The processing of A2 overtime 0.0 0.000000 0.000000
3 The processing of A3 overtime 1.0 0.0166667 �0.098448
4 The processing of A4 overtime 0.5 0.008333 �0.057557
5 The processing of A5 overtime 0.0 0.000000 0.000000
6 Technologic equipment adjustment overtime 2.0 0.033333 �0.163610
7 Non-planning processing 2.5 0.041667 �0.191010
8 Non-planning technologic equipment adjustment 0.5 0.008333 �0.057557
9 Stop production for equipment malfunction 1.0 0.016667 �0.098448
10 Stop production for exterior reasons 1.0 0.016667 �0.098448
11 Total 9.0 0.150000 �0.822802

Table 2
Calculation of the operational entropy in scheduling.a

No. States The amount of time Probabilities pi
0log2pi

0

1 The processing of A1 overtime 0.5 0.008333 �0.057557
2 The processing of A2 overtime 0.0 0.000000 0.000000
3 The processing of A3 overtime 1.0 0.0166667 �0.098448
4 The processing of A4 overtime 0.5 0.008333 �0.057557
5 The processing of A5 overtime 0.0 0.000000 0.000000
6 Technologic equipment adjustment overtime 2.5 0.041667 �0.191010
7 Non-planning processing 3.0 0.050000 �0.216096
8 Non-planning technologic equipment adjustment 0.5 0.008333 �0.057557
9 Stop production for equipment malfunction 3.0 0.050000 �0.216096
10 Stop production for exterior reasons 1.0 0.016667 �0.098448
11 Total 12.0 0.200000 �0.992802

a The operational entropy Hdd = 0.992802 bits; the average operational entropy Hda = 1.985604 bits/h.
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and not for the concrete time. As a result, the re-scheduling
may be reduced on a big scale, and the scheduling efficiency
can be enhanced. Secondly, the management of primary
factors which lead to the decline of schedule adherence
should be strengthened, especially to the non-profiting
abnormal state, such as the 6th state and the 9th state in
the empirical study, by which it will be more advantageous
to improve the validity of scheduling.

6. Conclusion

Taking a cellular manufacturing system as a research
example, information needed to describe its states has been
classified into two parts: the structural entropy and the
operational entropy. Based on the analysis of the recent
progress of information entropy applied in manufacturing
systems, we have developed the structural entropy model
and the operational entropy model of cellular manufactur-
ing systems. As a tool of measure, the schedule was intro-
duced into the research of entropy models applied in
cellular manufacturing systems. Using the maximum feasi-
ble schedule horizon and schedule adherence as two
indexes, we have calculated and analyzed the values of
the structure entropy and the operational entropy, and
finally given suggestions on how to improve the efficiency
of scheduling according to the results of calculation. Thus,
the validity of the proposed methodology is demonstrated.

Entropy is suitable for continuously monitoring the
state of a machine, group of machines or a complete pro-
cess. The measure of entropy is based on the typical data
from production or activity logs, which are readily avail-
able in any production environment. Thus, a system can
be easily designed to calculate entropy.
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